Embedding the Dynamics of Forced Nonlinear Systems in Multistable Memristor Circuits

نویسندگان

چکیده

A well-known feature of memristors is that they makes the circuit dynamics much richer than generated by classical $RLC$ circuits containing nonlinear resistors. In case with ideal memristors, such a multistability property, i.e., coexistence many different attractors for fixed set parameters, connected to fact state space composed continuum invariant manifolds where either convergent or oscillatory and more complex behaviors can be displayed. this paper we investigate possibility designing memristor known are embedded into manifolds. We consider class forced systems several which display dynamics, under conditions any given system reproduced two-terminal (one port) element flux-controlled memristor. It shown an input-less capable replicate varying constant forcing input, once parameters characteristic suitably selected. Indeed, there one-one correspondence between value input displayed on one circuit. Some extensions concerning non-constant terms use charge-controlled also provided. The results illustrated via FitzHugh-Nagumo model Duffing oscillator.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the study of bright and surface discrete cavity solitons dynamics in saturable nonlinear media

امروزه سالیتون ها بعنوان امواج جایگزیده ای که تحت شرایط خاص بدون تغییر شکل در محیط منتشر می-شوند، زمینه مطالعات گسترده ای در حوزه اپتیک غیرخطی هستند. در این راستا توجه به پدیده پراش گسسته، که بعنوان عامل پهن شدگی باریکه نوری در آرایه ای از موجبرهای جفت شده، ظاهر می گردد، ضروری است، زیرا سالیتون های گسسته از خنثی شدن پراش گسسته در این سیستم ها بوسیله عوامل غیرخطی بوجود می آیند. گسستگی سیستم عامل...

Global Lyapunov Analysis of Multistable Nonlinear Systems

A new type of stability is introduced and its equivalent Lyapunov characterization is presented. The problem of global stability for the compact set composed of all invariant solutions of a nonlinear system (several equilibriums, for instance) is studied. Such problem statement allows us to analyze global stability properties for multi-stable systems. It is shown that several well-known multi-s...

متن کامل

Memristor Hamiltonian Circuits

We prove analytically that 2-element memristiue c'ircuits consisting of a pass'iue I'inearinductor in parallel with a pass,iue memristor, or an act'iue memristiue deuice, can be described explicitly by a Hami,ltonian eqttation, whose solutions can be periodic or damped, and can be represented analytically by the constants of the motion along the circuit Hamiltonian. Generalizations to 3-element...

متن کامل

Memristor Based Chaotic Circuits

In this work, we present two memristor based chaotic circuits. These circuits are obtained by replacing the nonlinear resistor in the four element Chua’s circuit with a memristor. Hence, these chaotic circuits use only the four basic circuit elements. Moreover, one of these circuits has only one negative element in addition to the nonlinearity. The four element Chua’s circuit requires two negat...

متن کامل

Multistable nonlinear surface modes

We analyze the structure and stability of nonlinear surface modes in a simple one-dimensional lattice model of an adsorbed layer. Applying the bifurcation analysis, we reveal the phenomenon of multistability that manifests itself in the existence, for certain values of the total energy, of three distinct types of nonlinear surface modes with different structures and locations. We find that two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Journal on Emerging and Selected Topics in Circuits and Systems

سال: 2022

ISSN: ['2156-3365', '2156-3357']

DOI: https://doi.org/10.1109/jetcas.2022.3220363